Logto is an Auth0 alternative designed for modern apps and SaaS products. It offers both Cloud and Open-source services to help you quickly launch your identity and management (IAM) system. Enjoy authentication, authorization, and multi-tenant management all in one.
We recommend starting with a free development tenant on Logto Cloud. This allows you to explore all the features easily.
In this article, we will go through the steps to quickly build the SAML sign-in experience (user authentication) with .NET Core (Razor Pages) and Logto.
Prerequisites
- A running Logto instance. Check out the introduction page to get started.
- Basic knowledge of .NET Core (Razor Pages).
- A usable SAML account.
Create an application in Logtoβ
Logto is based on OpenID Connect (OIDC) authentication and OAuth 2.0 authorization. It supports federated identity management across multiple applications, commonly called Single Sign-On (SSO).
To create your Traditional web application, simply follow these steps:
- Open the Logto Console. In the "Get started" section, click the "View all" link to open the application frameworks list. Alternatively, you can navigate to Logto Console > Applications, and click the "Create application" button.
- In the opening modal, click the "Traditional web" section or filter all the available "Traditional web" frameworks using the quick filter checkboxes on the left. Click the ".NET Core (Razor Pages)" framework card to start creating your application.
- Enter the application name, e.g., "Bookstore," and click "Create application".
π Ta-da! You just created your first application in Logto. You'll see a congrats page which includes a detailed integration guide. Follow the guide to see what the experience will be in your application.
Integrate .NET Core (Razor Pages) SDKβ
- The following demonstration is built on .NET Core 8.0. The SDK is compatible with .NET 6.0 or higher.
- The .NET Core sample projects are available in the GitHub repository.
Installationβ
Add the NuGet package to your project:
dotnet add package Logto.AspNetCore.Authentication
Add Logto authenticationβ
Open Startup.cs
(or Program.cs
) and add the following code to register Logto authentication services:
using Logto.AspNetCore.Authentication;
var builder = WebApplication.CreateBuilder(args);
builder.Services.AddLogtoAuthentication(options =>
{
options.Endpoint = builder.Configuration["Logto:Endpoint"]!;
options.AppId = builder.Configuration["Logto:AppId"]!;
options.AppSecret = builder.Configuration["Logto:AppSecret"];
});
The AddLogtoAuthentication
method will do the following things:
- Set the default authentication scheme to
LogtoDefaults.CookieScheme
. - Set the default challenge scheme to
LogtoDefaults.AuthenticationScheme
. - Set the default sign-out scheme to
LogtoDefaults.AuthenticationScheme
. - Add cookie and OpenID Connect authentication handlers to the authentication scheme.
Sign-in and sign-out flowsβ
Before we proceed, there are two confusing terms in the .NET Core authentication middleware that we need to clarify:
- CallbackPath: The URI that Logto will redirect the user back to after the user has signed in (the "redirect URI" in Logto)
- RedirectUri: The URI that will be redirected to after necessary actions have been taken in the Logto authentication middleware.
The sign-in process can be illustrated as follows:
Similarly, .NET Core also has SignedOutCallbackPath and RedirectUri for the sign-out flow.
For the sack of clarity, we'll refer them as follows:
Term we use | .NET Core term |
---|---|
Logto redirect URI | CallbackPath |
Logto post sign-out redirect URI | SignedOutCallbackPath |
Application redirect URI | RedirectUri |
Regarding redirect-based sign-inβ
- This authentication process follows the OpenID Connect (OIDC) protocol, and Logto enforces strict security measures to protect user sign-in.
- If you have multiple apps, you can use the same identity provider (Logto). Once the user signs in to one app, Logto will automatically complete the sign-in process when the user accesses another app.
To learn more about the rationale and benefits of redirect-based sign-in, see Logto sign-in experience explained.
Configure redirect URIsβ
In the following code snippets, we assume your app is running on http://localhost:3000/
.
First, let's configure the Logto redirect URI. Add the following URI to the "Redirect URIs" list in the Logto application details page:
http://localhost:3000/Callback
To configure the Logto post sign-out redirect URI, add the following URI to the "Post sign-out redirect URIs" list in the Logto application details page:
http://localhost:3000/SignedOutCallback
Change the default pathsβ
The Logto redirect URI has a default path of /Callback
, and the Logto post sign-out redirect URI has a default path of /SignedOutCallback
.
You can leave them as are if there's no special requirement. If you want to change it, you can set the CallbackPath
and SignedOutCallbackPath
property for LogtoOptions
:
builder.Services.AddLogtoAuthentication(options =>
{
// Other configurations...
options.CallbackPath = "/Foo";
options.SignedOutCallbackPath = "/Bar";
});
Remember to update the value in the Logto application details page accordingly.
Implement sign-in/sign-out buttonsβ
First, add the handler methods to your PageModel
, for example:
public class IndexModel : PageModel
{
public async Task OnPostSignInAsync()
{
await HttpContext.ChallengeAsync(new AuthenticationProperties
{
RedirectUri = "/"
});
}
public async Task OnPostSignOutAsync()
{
await HttpContext.SignOutAsync(new AuthenticationProperties
{
RedirectUri = "/"
});
}
}
Then, add the buttons to your Razor page:
<p>Is authenticated: @User.Identity?.IsAuthenticated</p>
<form method="post">
@if (User.Identity?.IsAuthenticated == true) {
<button type="submit" asp-page-handler="SignOut">Sign out</button>
} else {
<button type="submit" asp-page-handler="SignIn">Sign in</button>
}
</form>
It will show the "Sign in" button if the user is not authenticated, and show the "Sign out" button if the user is authenticated.
Checkpoint: Test your applicationβ
Now, you can test your application:
- Run your application, you will see the sign-in button.
- Click the sign-in button, the SDK will init the sign-in process and redirect you to the Logto sign-in page.
- After you signed in, you will be redirected back to your application and see the sign-out button.
- Click the sign-out button to clear token storage and sign out.
Add SAML connectorβ
To enable quick sign-in and improve user conversion, connect with .NET Core (Razor Pages) as an identity provider. The Logto social connector helps you establish this connection in minutes by allowing several parameter inputs.
To add a social connector, simply follow these steps:
- Navigate to Console > Connectors > Social Connectors.
- Click "Add social connector" and select "SAML".
- Follow the README guide and complete required fields and customize settings.
If you are following the in-place Connector guide, you can skip the next section.
Set up Standard SAML appβ
Create social IdP's account and register SAML application (IdP)β
Let's go through configurations of SAML connector.
Before we kicking off, you can go to a social identity provider which supports SAML protocol and create your own account. Okta, OneLogin, Salesforce and some other platforms support authentication based on SAML protocol.
If your IdP mandate the encryption of SAML assertion and receiving of signed authentication requests, you should generate your private key and corresponding certificate using RSA algorithm. Keep the private key for your SP use and upload the certificate to IdP.
You also need to configure the ACS (Assertion Consumer Service) URL as ${your_logto_origin}/api/authn/saml/${connector_id}
to handle IdP's SAML assertion. Where you can find your connectorId
at SAML connector's details page in Logto's Admin Console.
Per current Logto's design, we only support Redirect-binding for sending authentication request and POST-binding for receiving SAML assertion. Although this sounds not cool, but we believe that the current design can handle most of your use cases. If you have any problems, feel free to reach out!
Configure SAML connector (SP)β
In this section, we will introduce each attribute in detail.
entityID Required
β
entityID
(i.e. issuer
) is Entity identifier. It is used to identify your entity (SAML SP entity), and match the equivalence in each SAML request/response.
signInEndpoint Required
β
The IdP's endpoint that you send SAML authentication requests to. Usually, you can find this value in IdP details page (i.e. IdP's SSO URL
or Login URL
).
x509Certificate Required
β
The x509 certificate generated from IdPs private key, IdP is expected to have this value available.
The content of the certificate comes with -----BEGIN CERTIFICATE-----
header and -----END CERTIFICATE-----
tail.
idpMetadataXml Required
β
The field is used to place contents from your IdP metadata XML file.
The XML parser we are using does not support customized namespace. If the IdP metadata comes with namespace, you should manually remove them. For namespace of XML file, see reference.
assertionConsumerServiceUrl Required
β
The assertion consumer service (ACS) URL is the SP's endpoint to receive IdP's SAML Assertion POST requests. As we mentioned in previous part, it is usually configured at IdP settings but some IdP get this value from SAML authentication requests, we hence also add this value as a REQUIRED field. It's value should look like ${your_logto_origin}/api/authn/saml/${connector_id}
.
signAuthnRequestβ
The boolean value that controls whether SAML authentication request should be signed, whose default value is false
.
encryptAssertionβ
encryptAssertion
is a boolean value that indicates if IdP will encrypt SAML assertion, with default value false
.
The signAuthnRequest
and encryptAssertion
attributes should align with corresponding parameters of IdP setting, otherwise error will be thrown to show that configuration does not match.
All SAML responses need to be signed.
requestSignatureAlgorithmβ
This should be aligned with the signature algorithms of IdP so that Logto can verify the signature of the SAML assertion. Its value should be either http://www.w3.org/2000/09/xmldsig#rsa-sha1
, http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
or http://www.w3.org/2001/04/xmldsig-more#rsa-sha512
and the default value is http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
.
messageSigningOrderβ
messageSigningOrder
indicates the signing and encrypting order of IdP, it's value should be either sign-then-encrypt
or encrypt-then-sign
and the default value is sign-then-encrypt
.
privateKey and privateKeyPassβ
privateKey
is an OPTIONAL value and is required when signAuthnRequest
is true
.
privateKeyPass
is the password you've set when creating privateKey
, required when necessary.
If signAuthnRequest
is true
, the corresponding certificate generated from privateKey
is required by IdP for checking the signature.
encPrivateKey and encPrivateKeyPassβ
encPrivateKey
is an OPTIONAL value and is required when encryptAssertion
is true
.
encPrivateKeyPass
is the password you've set when creating encPrivateKey
, required when necessary.
If encryptAssertion
is true
, the corresponding certificate generated from encPrivateKey
is required by IdP for encrypting SAML assertion.
For keys and certificates generation, openssl
is a wonderful tool. Here is sample command line that might be helpful:
openssl genrsa -passout pass:${privateKeyPassword} -out ${encryptPrivateKeyFilename}.pem 4096
openssl req -new -x509 -key ${encryptPrivateKeyFilename}.pem -out ${encryptionCertificateFilename}.cer -days 3650
privateKey
and encPrivateKey
files are enforced to be encoded in pkcs1
scheme as pem string, which means the private key files should start with -----BEGIN RSA PRIVATE KEY-----
and end with -----END RSA PRIVATE KEY-----
.
nameIDFormatβ
nameIDFormat
is an OPTIONAL attribute that declares the name id format that would respond. The value can be among urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified
, urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress
, urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName
, urn:oasis:names:tc:SAML:2.0:nameid-format:persistent
and urn:oasis:names:tc:SAML:2.0:nameid-format:transient
, and the default value is urn:oasis:names:tc:SAML:2.0:nameid-format:unspecified
.
timeoutβ
timeout
is the time tolerance for time validation, since the time between your SP entity and IdP entity could be different and network connection may also bring some delay. The unit is in millisecond, and the default value is 5000 (i.e. 5s).
profileMapβ
Logto also provide a profileMap
field that users can customize the mapping from the social vendors' profiles which are usually not standard. Each profileMap
keys is Logto's standard user profile field name and corresponding value should be social profiles field name. In current stage, Logto only concern 'id', 'name', 'avatar', 'email' and 'phone' from social profile, only 'id' is REQUIRED and others are optional fields.
Config typesβ
Name | Type | Required | Default Value |
---|---|---|---|
signInEndpoint | string | true | |
x509certificate | string | true | |
idpMetadataXml | string | true | |
entityID | string | true | |
assertionConsumerServiceUrl | string | true | |
messageSigningOrder | encrypt-then-sign | sign-then-encrypt | false | sign-then-encrypt |
requestSignatureAlgorithm | http://www.w3.org/2000/09/xmldsig#rsa-sha1 | http://www.w3.org/2001/04/xmldsig-more#rsa-sha256 | http://www.w3.org/2001/04/xmldsig-more#rsa-sha512 | false | http://www.w3.org/2001/04/xmldsig-more#rsa-sha256 |
signAuthnRequest | boolean | false | false |
encryptAssertion | boolean | false | false |
privateKey | string | false | |
privateKeyPass | string | false | |
nameIDFormat | urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified | urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress | urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName | urn:oasis:names:tc:SAML:2.0:nameid-format:persistent | urn:oasis:names:tc:SAML:2.0:nameid-format:transient | false | urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified |
timeout | number | false | 5000 |
profileMap | ProfileMap | false |
ProfileMap fields | Type | Required | Default value |
---|---|---|---|
id | string | false | id |
name | string | false | name |
avatar | string | false | avatar |
string | false | ||
phone | string | false | phone |
Referenceβ
- Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0
- samlify - Highly configuarable Node.js SAML 2.0 library for Single Sign On
Save your configurationβ
Double check you have filled out necessary values in the Logto connector configuration area. Click "Save and Done" (or "Save changes") and the SAML connector should be available now.
Enable SAML connector in Sign-in Experienceβ
Once you create a social connector successfully, you can enable it as a "Continue with SAML" button in Sign-in Experience.
- Navigate to Console > Sign-in experience > Sign-up and sign-in.
- (Optional) Choose "Not applicable" for sign-up identifier if you need social login only.
- Add configured SAML connector to the "Social sign-in" section.
Testing and Validationβ
Return to your .NET Core (Razor Pages) app. You should now be able to sign in with SAML. Enjoy!
Further readingsβ
End-user flows: Logto provides a out-of-the-box authentication flows including MFA and enterprise SSO, along with powerful APIs for flexible implementation of account settings, security verification, and multi-tenant experience.
Authorization: Authorization defines the actions a user can do or resources they can access after being authenticated. Explore how to protect your API for native and single-page applications and implement Role-based Access Control (RBAC).
Organizations: Particularly effective in multi-tenant SaaS and B2B apps, the organization feature enable tenant creation, member management, organization-level RBAC, and just-in-time-provisioning.
Customer IAM series Our serial blog posts about Customer (or Consumer) Identity and Access Management, from 101 to advanced topics and beyond.